教室長ブログ

中学生でも解ける 静岡大 数学 【 大垣市 河村学習塾 】

こんにちは。河村学習塾波須校の園部です。今日は静岡大学の 数学 の入試問題から。

3桁の自然数の百の位の数をa、十の位の数をb、一の位の数をcとする。
(1) 10a+b-2cが7の倍数ならばもとの自然数は7の倍数であることを示せ。
(2) a≠b, a=cであるとき、もとの自然数が7の倍数となるようなaとbの組は何通りあるか。

■ 解説
(1)
3桁の自然数は100a+10b+cを書ける。
10a+b-2cが7の倍数なので、nを整数として
10a+b-2c=7n
と書ける。
このとき
100a+10b+c
=(70a+7b+7c)+(30a+3b-6c)
=7(10a+b+c)+3(10a+b-2c)
=7(10a+b+c)+21n
=7(10a+b+c+3n)
a,b,c,nは整数だから7(10a+b+c+3n)は7の倍数である。よってもとの自然数は7の倍数である。

100a+10b+c=(90a+9b+3c)+(10a+b-2c)としてもうまくいかず、7の倍数を作るために上のような一工夫をするのが少し思いつきにくいでしょうか。

(2)
(1)より、10a+b-2cが7の倍数となることを考えればよい。a=cより、
10a+b-2c=8a+b=7a+(a+b)
7aは7の倍数より、これが7の倍数となるのはa+bが7の倍数となるときで、a+b=7,14となるときであり、
(a,b)=(1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (7,0), (5,9), (6,8), (8,6), (9,5)
の11通り。

(a,b)=(0,7) は3桁の自然数でなくなることに注意。
(a,b)=(7,7) はa≠bに反することに注意。

いかがでしたでしょうか。来週ももう少し紹介していこうと思います。